Zusammenfassung
Mit der Verfügbarkeit neuer Strategien für die Primärtherapie der Gliome, insbesondere
Temozolomid als Standard in der Primärtherapie des Glioblastoms, haben sich die Herausforderungen
für die Diagnostik und Therapie rezidivierter Gliome verändert. Die Differenzierung
der Tumorprogression von therapieinduzierten Veränderungen (Pseudoprogression) ist
komplexer geworden. Häufiger als früher wird die Indikation zu einer Rezidivoperation
auch aus diagnostischen Gründen bejaht, um aufgrund molekularer Veränderungen im Tumor
individualisierte Therapieentscheidungen zu treffen. Aktuell stehen zahlreiche Studien
der Rezidivtherapie maligner Gliome vor der Publikation, Endauswertung oder Ende der
Patientenrekrutierung. Die Rezidivtherapie der Gliome außerhalb klinischer Studien
hängt wesentlich von der zuvor erfolgten Primärtherapie ab. Ob bei Gliomen der WHO-Grade
II und III im Rezidiv eine maligne Progression nachweisbar ist, spielt bei der Wahl
der Therapie eine untergeordnete Rolle. Bei allen Patienten sollte im Rezidiv im Rahmen
einer interdisziplinären Abstimmung die Indikation zu einer erneuten Operation geprüft
werden. Wurde in der Primärtherapie keine Strahlentherapie durchgeführt, so ist diese
im Rezidiv fast immer indiziert. Wurde in der Primärtherapie keine Chemotherapie mit
Temozolomid durchgeführt, so ist diese im Rezidiv ebenso fast immer indiziert, meist
als Monotherapie in konvenzioneller Dosierung (150 - 200 mg/m2, D1 - D5 × 28 Tage). Wenn bereits Temozolomid eingesetzt wurde, kommen vor allem
Nitrosoharnstoffe, eine nitrosoharnstoffhaltige Kombination, modifizierte „dosisintensivierte”
Temozolomidschemata, eine erneute Strahlentherapie, der Einschluss in eine aktuelle
Therapiestudie oder auch der Verzicht auf weitere Therapiemaßnahmen in Betracht. Patientenalter,
Karnofsky-Index, Tumorlokalisation, frühere Verträglichkeit der Strahlen- und Chemotherapie,
Intervall zum Abschluss der Primärtherapie und Patientenwunsch spielen bei dieser
Therapieentscheidung eine wichtige Rolle.
Abstract
The development of novel approaches to newly diagnosed gliomas, notably of temozolomide
as a new standard of care for glioblastoma, has resulted in new challenges for the
diagnosis and treatment of recurrent gliomas. The differentiation of tumor progression
from therapy-related changes (pseudoprogression) has become complex. Surgical procedures
for recurrent disease are more commonly performed also for diagnostic purposes, e.
g., to base therapeutic decisions on specific molecular alterations detected in the
recurrent tumor tissue. Several current randomized clinical trials for recurrent glioma
have completed accrual and await their final analysis and publication. The treatment
of recurrent gliomas of WHO grades II - IV outside of clinical trials depends strongly
on the type of treatment administered for newly diagnosed disease. Whether gliomas
of grades II and III show histological evidence of malignant progression to higher
grade lesions at recurrence, is less critical. Interdisciplinary brain tumor boards
should help to decide whether a second surgical procedure is indicated. Patients with
recurrent gliomas who have not had radiotherapy before are usually candidates for
radiotherapy. Patients with recurrent gliomas who have had radiotherapy before, but
no chemotherapy, should receive temozolomide in most instances, commonly at the conventional
dose of 150 - 200 mg/m2 (D1 - D5 × 28 days). If temozolomide has already been administered for newly diagnosed
disease, further options include nitrosoureas, nitrosourea-based combinations, modified
„dose-dense” temozolomide regimens, a second course of radiotherapy, enrollment in
an experimental trial or no further tumor-specific treatment. This choice depends
on patient age, Karnofsky performance score, tumor localization, prior tolerance of
radiotherapy and chemotherapy, interval from completion of primary treatment and patient
preference.
Schlüsselwörter
Gliom - Rezidiv - Chemotherapie
Key words
glioma - recurrence - chemotherapy
Literatur
- 1
Stupp R, Mason W P, van den Bent M J. et al .
Radiotherapy plus concomitant and adjuvant temozolomide for patients with newly diagnosed
glioblastoma.
N Engl J Med.
2005;
352
987-996
- 2
Stupp R, Hegi M E, van den Bent M J. et al .
Changing paradigms. An update on the multidisciplinary management of malignant glioma.
Oncologist.
2006;
11
165-180
- 3
Brem H, Piantadosi S, Burger P C. et al .
Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery
by biodegradable polymers of chemotherapy for recurrent gliomas.
Lancet.
1995;
345
1008-1012
- 4
Yung W KA, Prados M D, Yaga-Tur R. et al .
Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma
or anaplastic oligoastrocytoma at first relapse.
J Clin Oncol.
1999;
17
2762-2771
- 5
Yung W KA, Albright R E, Olson J. et al .
A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme
at first relapse.
Br J Cancer.
2000;
83
588-593
- 6
Macdonald D R, Cascino T L, Schold S C, Cairncross J G.
Response criteria for phase II studies of supratentorial malignant glioma.
J Clin Oncol.
1990;
8
1277-1280
- 7
De Wit M C, Bruin H G, Eijkenboom W. et al .
Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression.
Neurology.
2004;
63
535-537
- 8
Chamberlain M C, Glantz M J, Chalmers L. et al .
Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma.
J Neurooncol.
2007;
82
81-83
- 9
Hegi M E, Diserens A C, Gorlia T. et al .
MGMT gene silencing and response to temozolomide in glioblastoma.
N Engl J Med.
2005;
352
997-1003
- 10
Mellinghoff I K, Wang M Y, Vivanco I. et al .
Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors.
N Engl J Med.
2005;
353
2012-2024
- 11
Shepherd S F, Laing R W, Cosgrove V P. et al .
Hypofractionated stereotactic radiotherapy in the management of recurrent glioma.
Int J Radiat Oncol Biol Phys.
1997;
37
393-398
- 12
Combs S E, Thilmann C, Edler L. et al .
Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term
results in 172 patients treated in a single institution.
J Clin Oncol.
2005;
23
8863-8869
- 13
Wong E T, Hess K R, Gleason M J. et al .
Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II
clinical trials.
J Clin Oncol.
1999;
17
2572-2578
- 14
Cairncross G, Berkey , Shaw E. et al .
Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone
for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology
Group Trial 9402.
J Clin Oncol.
2006;
24
2707-2714
- 15
Van den Bent M J, Carpentier A F, Brandes A A. et al .
Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival
but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas:
a randomized European Organisation for Research and Treatment of Cancer phase III
trial.
J Clin Oncol.
2006;
24
2715-2722
- 16
Kappelle A C, Postma T J, Taphoorn M J. et al .
PCV chemotherapy for recurrent glioblastoma multiforme.
Neurology.
2001;
56
118-120
- 17
Schmidt F, Fischer J, Herrlinger U. et al .
PCV chemotherapy for recurrent glioblastoma.
Neurology.
2006;
66
587-589
- 18
Brandes A A, Tosoni A, Amista P. et al .
How effective is BCNU in recurrent glioblastoma in the modern area?.
Neurology.
2004;
63
1281-1284
- 19
Neuro-Oncology Working Group (NOA) of the German Cancer Society .
Neuro-Oncology Working Group (NOA)-01 trial of ACNU/VM26 versus ACNU/Ara-C chemotherapy in addition to involved-field radiotherapy in the first-line
treatment of malignant glioma.
J Clin Oncol.
2003;
21
3276-3284
- 20
Preuss I, Thust R, Kaina B.
Protective effect of O6-methylguanine-DNA methyltransferase (MGMT) on the cytotoxic
and recombinogenic activity of different antineoplastic drugs.
Int J Cancer.
1996;
65
506-512
- 21
Esteller M, Garcia-Foncillas J, Andion E. et al .
Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating
agents.
N Engl J Med.
2000;
343
1350-1354
- 22
Wick W, Steinbach J P, Küker W M. et al .
One week on/one week off: a novel active regimen of temozolomide for recurrent glioblastoma.
Neurology.
2004;
62
2113-2115
- 23
Wick A, Felsberg J, Steinbach J P. et al .
Efficacy and tolerability of temozolomide in an one week on/one week off regimen in
patients with recurrent glioma.
J Clin Oncol.
2007;
25
3357-3361
- 24
Brandes A A, Tosoni A, Cavallo G. et al .
Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma:
phase II study from gruppo italiano cooperativo di neuro-oncologia (GICNO).
Br J Cancer.
2006;
95
1155-1160
- 25
Tolcher A W, Gerson S L, Denis L. et al .
Marked inactivation of O6-alkylguanine-DNA alkyltransferase activity with protracted
temozolomide schedules.
Br J Cancer.
2003;
88
1004-1011
- 26
Herrlinger U, Rieger J, Steinbach J P. et al .
UKT-04 trial of continuous metronomic low-dose chemotherapy with methotrexate and
cyclophosphamide for recurrent glioblastoma.
J Neuro-Oncol.
2005;
71
295-299
- 27
Tosoni A, Cavallo G, Ermani M. et al .
Is protracted low-dose temozolomide feasible in glioma patients?.
Neurology.
2006;
66
427-429
- 28
Wick W, Weller M.
How lymphotoxic is dose-intensified temozolomide? The glioblastoma experience.
J Clin Oncol.
2005;
23
4235-4236
- 29
Reardon D A, Egorin M J, Quinn J A. et al .
Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma
multiforme.
J Clin Oncol.
2005;
23
9359-9368
- 30
Vredenburgh J J, Desjardins A, Herndon 2nd
J E. et al .
Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma.
Clin Cancer Res.
2007;
13
1253-1259
- 31
Weller M.
Therapeutische Antagonisierung von transforming growth factor-β (TGF-β) beim Glioblastom:
Rationale und aktuelle Behandlungskonzepte.
Aktuel Neurol.
2004;
31
14-18
- 32
Hau P, Jachimczak P, Schlingensiepen R. et al .
Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical
to phase I/II studies.
Oligonucleotides.
2007;
17
201-212
- 33
Uhl M, Aulwurm S, Wischhusen J. et al .
SD-208, a novel TGF-β receptor I kinase inhibitor, inhibits growth and invasiveness
and enhances immunogenicity of murine and human glioma cells in vitro and in vivo.
Cancer Res.
2004;
64
7954-7961
Prof. Dr. Michael Weller
Neurologische Klinik, Universitätsspital Zürich
Frauenklinikstr. 26
8091 Zürich, Schweiz
Email: michael.weller@usz.ch